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Conclusions
1.	Co-locating the open-path gas-analyzer and sonic measurement volumes 

preserves the true covariance between all variables associated with the 
WPL terms and eliminates biases in the eddy-flux estimates. The correction 
factors accounting for the loss of correlation due to spatial separation in the 
individual WPL terms (Massman, 2004) are 6.5% and 13.8% for w´ρv´ and w´ρc´ 
respectively.  

2.	IRGASON temperature agrees with the ambient thermistor probe and 
CSAT3 sonic temperatures to within 1.1% and 2.4% respectively, which in-
dicates that the housing surfaces adjacent to the open-path sensing vol-
ume are not appreciably warmer or cooler than the ambient air. When cor-
rected for humidity, IRGASON sonic temperature is accurate and reliable for 
calculating CO2 mixing ratios. It has sufficient frequency response, and it is not 
affected by solar radiation. 

3.	Compared to the CSAT3, the IRGASON underestimates hourly and cumula-
tive sensible heat flux by 5.7% and 0.7% respectively. 

4.	Calculating CO2 flux using point-by-point conversion to mixing ratio is fea-
sible for an open-path gas analyzer and a co-located sonic anemometer/
thermometer.  The air density WPL terms can be implicitly accounted for 
with this approach. Differences between CO2 flux calculated using point-by-
point conversion to mixing ratio and flux computed following the traditional 
WPL methodology are less than 0.3%. The pressure term of the density correc-
tions (Zhang et al., 2011) is small for this site and does not explain the differ-
ence between WPL and molar-ratio-based fluxes. 

No apparent CO2 uptake was observed during off-season and cold periods over 
snow-covered surfaces, which also suggests negligible instrument induced 
heat flux in the sensing path of the gas analyzer. 

Future work
Validate the mixing-ratio method with flux measurements by a closed-path  
eddy-covariance system.
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Introduction
Eddy flux is systematically underestimated because of:

•	Spatial separation between measurements of w´ (vertical wind) and ρ´  
(gas density)

•	Temporal asynchronicity between measurements of w´, T´, and ρ´

Open-path gas analyzers introduce biases in the flux estimates attributed to:
•	Variations of air density with temperature T´ and water vapor ρv´  

(Webb et al., 1980), (Massman, 2004)

•	Instrument-induced surface-heat exchange (Grelle et al., 2007)

The IRGASON addresses these problems with the following features:
•	Simultaneously measures w´, T´, ρv´, and ρc´ in the same  

volume of air

•	Reduces instrument self-heating and solar radiation 
loading due to low power consumption and small- 
diameter, aerodynamic housing

•	Implicitly accounts for air density effects with the ability to  
compute CO2 flux using point-by-point conversion to mixing ratio

Research objectives
This study was conducted to:

1.	 Examine the effect of anemometer and gas-analyzer separation on sensible 
(Hs), latent (Le), and CO2 (Fc) fluxes 

2.	 Compare the IRGASON and CSAT3 sonic temperatures

3.	 Evaluate the influence of instrument induced heat on ambient sensible heat 
flux measurements

4.	 Test the concept of calculating fluxes measured by an open-path analyzer  
using instantaneous point-by-point conversion to CO2 mixing ratio

Fig 1. Test setup at a pasture  
near Logan, Utah 

Measurement height:
	 IRGASON: 1.65 m
	 CSAT3: 2 m

Spatial separation: 
	 Horizontal: 0.35 m
	 Vertical: 0.2 m

Sampling rate: 20 Hz

Temperature 
probe CSAT3

IRGASON

Materials and methods
Operate the IRGASON and CSAT3 in the field over different environmental conditions.
 
Calculate flux from the IRGASON using instantaneous CO2 mixing-ratio (MR) based 
on the provided w´, T´, ρv´, and ρc´ measurements and the following steps:

a.	Correct IRGASON sonic  
	 temperature for humidity  
	 on-line using the co-located  
	 water vapor density:
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b.	Compute water-vapor  
	 pressure and instantaneous  
	 CO2 mixing ratio using:
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c.	Calculate CO2 flux using the  
	 instantaneous CO2 mixing  
	 ratio:
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Compare the results with CO2 
fluxes computed with the tradi-
tional WPL approach:
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where the effect of humidity 
on sonic temperature is cor-
rected with:
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Results
1. Effect of sensor spatial separation on eddy fluxes 
Eddy flux is computed when co-located measurements of w´ and T´ from the IRGASON are replaced with equivalent measurements from the CSAT3. 

1A. Effect of spatial separation on Hs 
A 14.3% loss in cumulative Hs between co-located w´ and T´ and dis-
placed (w´CSAT3, T´IRGASON) measurements was observed.  The loss in-
creases to 25.3% when w´ is underneath the T´ (w´IRGASON, T´CSAT3).
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1B. Effect of spatial separation on raw Le
The cumulative uncorrected water vapor flux w´ρv´ from the IRGASON 
(w´ and ρv´ co-located) is 6.5% higher than the same flux computed 
using ρv´ from the IRGASON and w´ from the adjacent CSAT3. 
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1C. Effect of spatial separation on raw Fc
The magnitude of the cumulative uncorrected CO2 flux w´ρc´ from the 
IRGASON is 13.8% larger than the cumulative flux from the spatially 
displaced measurements: ρc´ IRGASON and w´ CSAT3.
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1D. Effect of spatial separation on WPL corrected Fc
Flux is underestimated 41% when w´ and T´ measurements are sep-
arated from the ρv´ and ρc´.  The error is reduced to 27% when T´ is 
co-located with ρv´ and ρc´. 
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2. Comparison of sonic temperature
IRGASON and CSAT3 sonic temperatures X-Y slopes agree with the thermistor probe within 1.1% and 3.6% respectively.  The CSAT3 overestimated 
the slope by 2.4% compared to the IRGASON.  The CSAT3 has 0.49 °C offset compared to the IRGASON and the air-temperature probe.
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3. Hourly sensible heat flux comparison
Compared to the CSAT3, the IRGASON underestimates the sensible heat 
flux by 5.7%.   Part of this error is attributed to the 2.4% gain error in the 
sonic temperature of the CSAT3. Cumulative fluxes agree within 0.7%.
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4. Comparison of CO2 flux computed by the mixing-ratio method to the traditional WPL density-based approach 
Both methods yield identical results to within 0.25%.  The pressure term (Zhang  et al., 2011) is negligible for this site and does not explain the small 
difference between the two approaches.  No apparent CO2 uptake was observed during off-season and over snow-covered surfaces with either 
method. (No instrument heating corrections were applied.)
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